Hopf Algebras and Galois Module Theory May 28 - 31, 2024

Left braces of size $p^2(2p+1)^2$, for p an odd Germain prime

Teresa Crespo

Wednesday May 29th

Braces

A *(left) brace* is a triple $(B, +, \cdot)$, where B is a set and + and \cdot are operations on B such that

- (B, +) is an abelian group,
- (B, \cdot) is a group,
- for all $a, b, c \in B$,

$$a(b+c) = ab - a + ac$$
, (brace relation).

We call (B, +) the *additive group* and (B, \cdot) the *multiplicative group* of the brace. The cardinal of B is called the *size* of the brace.

For any abelian group (A, +), (A, +, +) is a brace, called *trivial brace*.

For B_1 and B_2 braces, a map $f : B_1 \to B_2$ is a *brace morphism* if f(b + b') = f(b) + f(b') and f(bb') = f(b)f(b') for all $b, b' \in B_1$. If f is bijective, we say that f is an *isomorphism*. In that case we say that the braces B_1 and B_2 are *isomorphic*.

Braces vs. holomorph

If (B, +) is an abelian group and G a regular subgroup of $\operatorname{Hol}(B) \simeq B \rtimes \operatorname{Aut} B$, then $\pi_{1|G}: G \to B$, $(a, f) \mapsto a$ is bijective.

For a left brace $(B, +, \cdot)$ and each $a \in B$, we have a bijective map $\lambda_a : B \to B, \quad b \mapsto -a + a \cdot b.$ We have $\lambda_a(b+c) = \lambda_a(b) + \lambda_a(c), \ a \cdot b = a + \lambda_a(b), \ \lambda_{a \cdot b} = \lambda_a \circ \lambda_b.$

Proposition. (Bachiller) Let $(B, +, \cdot)$ be a left brace. Then

 $\{(a,\lambda_a)\,:\,a\in B\}$

is a regular subgroup of $\operatorname{Hol}(B, +)$, isomorphic to (B, \cdot) . Conversely, if (B, +) is an abelian group and G is a regular subgroup of $\operatorname{Hol}(B, +)$, then B is a left brace with $(B, \cdot) \simeq G$, where

$$a \cdot b = a + f(b), \quad (\pi_{1|G})^{-1}(a) = (a, f) \in G.$$

These assignments give a bijective correspondence between isomorphism classes of left braces $(B, +, \cdot)$ and conjugacy classes of regular subgroups of Hol(B, +).

Semidirect product of braces

Let $(B_1, +, \cdot)$ and $(B_2, +, \cdot)$ be braces and $\tau : (B_2, \cdot) \to \operatorname{Aut}(B_1, +, \cdot)$ be a group morphism. Define in $B_1 \times B_2$

$$(a,b) + (a',b') = (a + a', b + b'), \quad (a,b) \cdot (a',b') = (a \cdot \tau(b)(a'), b \cdot b')$$

Then $(B_1 \times B_2, +, \cdot)$ is a brace which is called the *semidirect product* of the braces B_1 and B_2 via τ .

If τ is the trivial morphism, then $(B_1 \times B_2, +, \cdot)$ is the *direct product* of B_1 and B_2 .

Hypothesis. m and n are relatively prime integer numbers such that each group of order mn has a normal subgroup of order m.

By the Schur-Zassenhaus theorem, the hypothesis on m and n implies that any group G of order mn is $G = G_1 \rtimes G_2$, with $|G_1| = m$, $|G_2| = n$ and any subgroup of G of order n is conjugate to G_2 .

Proposition. Each brace of size mn is a semidirect product of a brace of size m and a brace of size n.

Proof.

Let B be a brace of size mn with additive group N and multiplicative group G. $N = N_1 \times N_2$, with N_1 abelian group of order m, N_2 abelian group of order n. $G = G_1 \rtimes G_2$, with G_1 group of order m, G_2 group of order n.

 $\operatorname{Aut}(N) \simeq \operatorname{Aut}(N_1) \times \operatorname{Aut}(N_2) \Rightarrow \operatorname{Hol}(N) \simeq \operatorname{Hol}(N_1) \times \operatorname{Hol}(N_2).$

 $\operatorname{Hol}(N) \ni (a, f, b, g), \ a \in N_1, f \in \operatorname{Aut}(N_1), b \in N_2, g \in \operatorname{Aut}(N_2)$

$$(a_1, f_1, b_1, g_1)(a_2, f_2, b_2, g_2) = (a_1 + f_1(a_2), f_1f_2, b_1 + g_1(b_2), g_1g_2)$$
(1)

$$(a_1, f_1, b_1, g_1)^{-1} = (-f^{-1}(a_1), f_1^{-1}, -g_1^{-1}(b_1), g_1^{-1}).$$
(2)

The regular subgroup of Hol(N) corresponding to B is $\widetilde{G} = \{(x, \lambda_x) : x \in N\}$. For $x = (0, b) \in N$, $(x, \lambda_x) = (0, f_b, b, g_b)$ for some $f_b \in \operatorname{Aut}(N_1), g_b \in \operatorname{Aut}(N_2)$. $\widetilde{G}_2 := \{(0, f_b, b, g_b) : b \in N_2\}$ is a subgroup of \widetilde{G} of order n, conjugate to G_2 . For $x = (a, 0) \in N$, $(x, \lambda_x) = (a, f_a, 0, g_a)$, for some $f_a \in Aut(N_1), g_a \in Aut(N_2)$. $\widetilde{G}_1 := \{(a, f_a, 0, g_a) : a \in N_2\}$ is a subgroup of \widetilde{G} of order m, equal to G_1 . We have then $\widetilde{G} = \widetilde{G}_1 \rtimes \widetilde{G}_2$. Moreover

$$\widetilde{G}_1 \lhd \widetilde{G} \implies g_a = \mathrm{Id}, \forall a \in N_1.$$

Now consider

$$\overline{G}_1 := \{(a, f_a) : a \in N_1\} \subset \operatorname{Hol}(N_1), \quad \overline{G}_2 := \{(b, g_b) : b \in N_2\} \subset \operatorname{Hol}(N_2).$$

 \overline{G}_1 is a regular subgroup of Hol (N_1) , isomorphic to G_1 and \overline{G}_2 is a regular subgroup of Hol (N_2) , isomorphic to G_2 , corresponding to two braces B_1, B_2 of sizes m and n, respectively. We define

$$\tau: \overline{G}_2 \to \operatorname{Aut}(N_1), \ \tau(b, g_b) = f_b.$$

We check that f_b is also a morphism with respect to the product \cdot in \overline{G}_1 and that B is the semidirect product of B_1 and B_2 via τ .

Corollary. Let B_1, B_2 be braces of sizes m, n, respectively. Let $G_1 := \{(a, \lambda_a) : a \in (B_1, +)\} \subset \operatorname{Hol}(B_1, +), G_2 := \{(b, \lambda_b) : b \in (B_1, +)\} \subset \operatorname{Hol}(B_2, +)$ be the regular subgroups corresponding to B_1, B_2 , respectively. Let τ be a group morphism from (B_2, \cdot) to $\operatorname{Aut}(B_1, +, \cdot)$. Then

 $G := \{(a, \lambda_a \tau(b, \lambda_b), b, \lambda_b) : (a, b) \in (B_1 \times B_2, +)\} \subset \operatorname{Hol}(B_1 \times B_2, +)$ is a regular subgroup of $\operatorname{Hol}(B_1 \times B_2, +)$ corresponding to the semidirect product

of B_1 and B_2 via τ .

Proposition. Isomorphism classes of braces of size mn correspond to triples (G_1, G_2, τ) , where G_1 and G_2 ranges over conjugation classes of regular subgroups of Hol (N_1) and Hol (N_2) , respectively, and τ ranges over equivalence classes of morphisms from G_2 to Aut B_1 , where B_1 denotes the brace corresponding to G_1 , under the relation

 $\tau \sim \tau' \Leftrightarrow \tau' \circ conj_{h_2} | G_2 = conj_{h_1} \circ \tau$ for $(h_1, h_2) \in Aut N$ such that $conj_{h_1}(G_1) = G_1$ and $conj_{h_2}(G_2) = G_2$. We shall apply the preceding results to determine all left braces of size p^2q^2 , for p an odd Germain prime, q = 2p + 1.

Using the Sylow theorems, we obtain that $m = q^2$, $n = p^2$ satisfy the assumed hypothesis, i.e. each group of order p^2q^2 has a normal subgroup of order q^2 .

Braces of size p^2 , for p an odd prime number (Bachiller)

In all cases, $(B, \cdot) \simeq (B, +)$.

 $I) \ \mathbf{Cyclic} \ \mathbf{additive} \ \mathbf{group}.$

1) Trivial brace:

Aut $B = \operatorname{Aut}(\mathbb{Z}/(p^2)) \simeq (\mathbb{Z}/(p^2))^*$,

 $G:=\{(x,\mathrm{Id})\,:\,x\in B\}\subset \mathrm{Hol}(\mathbb{Z}/(p^2)).$

2) Brace with \cdot defined by $x_1 \cdot x_2 = x_1 + x_2 + px_1x_2$:

Aut $B = \{k \in (\mathbb{Z}/(p^2))^* : k \equiv 1 \pmod{p}\},\$

 $G = \{(x, 1 + px) : x \in B\} \subset \operatorname{Hol}(\mathbb{Z}/(p^2)).$

 $II) \ \textbf{Noncyclic additive group.}$

1) Trivial brace:

Aut $B = \operatorname{Aut}(\mathbb{Z}/(p) \times \mathbb{Z}/(p)) \simeq \operatorname{GL}(2, p),$

 $G = \{ \left(\begin{pmatrix} x \\ y \end{pmatrix}, \operatorname{Id} \right) : \left(\begin{smallmatrix} x \\ y \end{smallmatrix} \right) \in B \} \subset \operatorname{Hol}(\mathbb{Z}/(p) \times \mathbb{Z}/(p)).$

2) Brace with
$$\cdot$$
 defined by $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \cdot \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 + y_1 y_2 \\ y_1 + y_2 \end{pmatrix}$:

Aut
$$B = \left\{ \begin{pmatrix} d^2 & b \\ 0 & d \end{pmatrix} : b \in \mathbb{Z}/(p), d \in (\mathbb{Z}/(p))^* \right\}$$

$$G = \left\{ \left(\begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} \right) : \begin{pmatrix} x \\ y \end{pmatrix} \in B \right\} \subset \operatorname{Hol}(\mathbb{Z}/(p) \times \mathbb{Z}/(p)).$$

Groups of order p^2q^2 , p, q primes, q = 2p + 1

 $G = G_1 \rtimes_{\tau} G_2, |G_1| = q^2, |G_2| = p^2, \tau : G_2 \to \operatorname{Aut}(G_1).$ $G_1 \rtimes_{\tau} G_2 \simeq G_1 \rtimes_{\tau'} G_2 \Leftrightarrow \text{there exist automorphisms } f \text{ of } G_1, g \text{ of } G_2 \text{ such that } conj_f \circ \tau = \tau' \circ g.$

1) $\overline{G_1 = \mathbb{Z}/(q^2)}$ Let $\langle \alpha \rangle$ be the subgroup of order p of $\operatorname{Aut}(\mathbb{Z}/(q^2)) = (\mathbb{Z}/(q^2))^*$. 1.1) $\underline{G_2 = \mathbb{Z}/(p^2)}$ $G = \mathbb{Z}/(p^2q^2)$ $\mathbb{Z}/(q^2) \rtimes \mathbb{Z}/(p^2), (x_1, y_1) \cdot (x_2, y_2) = (x_1 + \alpha^{y_1}x_2, y_1 + y_2),$

1.2) $G_2 = \mathbb{Z}/(p) \times \mathbb{Z}/(p)$

 $G = \mathbb{Z}/(pq^2) \times \mathbb{Z}/(p)$ $G = \mathbb{Z}/(q^2) \rtimes (\mathbb{Z}/(p) \times \mathbb{Z}(p)), (x_1, \begin{pmatrix} y_1 \\ z_1 \end{pmatrix}) \cdot (x_2, \begin{pmatrix} y_2 \\ z_2 \end{pmatrix}) = (x_1 + \alpha^{y_1} x_2, \begin{pmatrix} y_1 + y_2 \\ z_1 + z_2 \end{pmatrix}).$

2)
$$G_1 = \mathbb{Z}/(q) \times \mathbb{Z}/(q)$$

 $\operatorname{Aut}(\mathbb{Z}/(q) \times \mathbb{Z}/(q)) = \operatorname{GL}(2,q)$ has (p+3)/2 subgroups of order p, up to conjugacy,

$$\left\langle \left(\begin{array}{cc} 1 & 0 \\ 0 & \beta \end{array}\right) \right\rangle, \left\langle \left(\begin{array}{cc} \beta & 0 \\ 0 & \beta \end{array}\right) \right\rangle, \left\langle \left(\begin{array}{cc} \beta & 0 \\ 0 & \beta^{-1} \end{array}\right) \right\rangle, \left\langle \left(\begin{array}{cc} \beta & 0 \\ 0 & \beta^k \end{array}\right) \right\rangle, \tag{3}$$

where $\langle \beta \rangle$ is the unique subgroup of order p of $(\mathbb{Z}/(q))^*$, $k \in (\mathbb{Z}/(p))^*$, $k \neq -1, 1$, $k \sim l \Leftrightarrow kl \equiv 1 \pmod{p}$.

2.1) $\frac{G_2 = \mathbb{Z}/(p^2)}{G = \mathbb{Z}/(p^2q) \times \mathbb{Z}/(q)}$ $G = (\mathbb{Z}/(q) \times \mathbb{Z}/(q)) \rtimes_M \mathbb{Z}/(p^2)$

$$\left(\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, z_1 \right) \cdot \left(\begin{pmatrix} x_2 \\ y_2 \end{pmatrix}, z_2 \right) = \left(\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + M^{z_1} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}, z_1 + z_2 \right),$$

for M one of the matrices in (3). This gives (p+3)/2 groups.

2.2)
$$\underline{G_2 = \mathbb{Z}/(p) \times \mathbb{Z}/(p)}$$

$$G = \mathbb{Z}/(pq) \times \mathbb{Z}/(pq)$$

$$G = (\mathbb{Z}/(q) \times \mathbb{Z}/(q)) \rtimes_M (\mathbb{Z}/(p) \times \mathbb{Z}/(p)),$$

$$\left(\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} z_1 \\ t_1 \end{pmatrix} \right) \cdot \left(\begin{pmatrix} x_2 \\ y_2 \end{pmatrix}, \begin{pmatrix} z_2 \\ t_2 \end{pmatrix} \right) = \left(\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + M^{z_1} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}, \begin{pmatrix} z_1 + z_2 \\ t_1 + t_2 \end{pmatrix} \right),$$
for *M* one of the matrices in (3). This gives $(p+3)/2$ groups.
$$G = (\mathbb{Z}/(q) \times \mathbb{Z}/(q)) \rtimes_\beta (\mathbb{Z}/(p) \times \mathbb{Z}/(p)),$$

$$\left(\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} z_1 \\ t_1 \end{pmatrix} \right) \cdot \left(\begin{pmatrix} x_2 \\ y_2 \end{pmatrix}, \begin{pmatrix} z_2 \\ t_2 \end{pmatrix} \right) = \left(\begin{pmatrix} x_1 + \beta^{t_1} x_2 \\ y_1 + \beta^{z_1 + t_1} y_2 \end{pmatrix}, \begin{pmatrix} z_1 + z_2 \\ t_1 + t_2 \end{pmatrix} \right).$$

Given an abelian group N of order p^2q^2 $(p, q \text{ primes}, q = 2p + 1), N = N_1 \times N_2,$ $|N_1| = q^2, |N_2| = p^2$, we want to determine all braces with additive group N.

We consider the pairs of braces B_1, B_2 of sizes q^2, p^2 , with additive groups N_1, N_2 . Let G_1, G_2 denote their multiplicative groups.

For each of the group morphisms $\tau : G_2 \to \operatorname{Aut}(G_1)$, we need to perform the following steps.

1) Check if the image of τ is contained in Aut (B_1) .

2) Split the equivalence class of τ under the relation

$$\tau \sim \tau' \Leftrightarrow \tau' \circ g = conj_f \circ \tau, f \in \operatorname{Aut} G_1, g \in \operatorname{Aut} G_2$$

into equivalence classes under the relation

$$\tau \sim \tau' \Leftrightarrow \tau' \circ conj_{h_2} | G_2 = conj_{h_1} \circ \tau,$$

 $(h_1, h_2) \in \operatorname{Aut} N$ such that $conj_{h_1}(G_1) = G_1$ and $conj_{h_2}(G_2) = G_2$

The braces $(B, +, \cdot)$ of size p^2q^2 , with p odd Germain prime, q = 2p + 1 are

- I) p + 4 braces with $(B, +) \simeq \mathbb{Z}/(p^2q^2)$. From these
 - ► 4 braces with $(B, \cdot) \simeq \mathbb{Z}/(p^2q^2)$,
 - ▶ p braces with $(B, \cdot) \simeq \mathbb{Z}/(q^2) \rtimes \mathbb{Z}/(p^2)$.

II) 8 braces with $(B, +) \simeq \mathbb{Z}/(pq^2) \times \mathbb{Z}/(p)$. From these

- ▶ 4 braces with $(B, \cdot) \simeq \mathbb{Z}/(pq^2) \times \mathbb{Z}/(p)$,
- ▶ 4 braces with $(B, \cdot) \simeq \mathbb{Z}/(q^2) \rtimes (\mathbb{Z}/(p) \times \mathbb{Z}(p)).$

III) $(p^2 + 4p + 9)/2$ braces with $(B, +) \simeq \mathbb{Z}/(p^2q) \times \mathbb{Z}/(q)$. From these

- ▶ 4 braces with $(B, \cdot) \simeq \mathbb{Z}/(p^2 q) \times \mathbb{Z}/(q)$,
- ► p braces with $(B, \cdot) \simeq (\mathbb{Z}/(q) \times \mathbb{Z}/(q)) \rtimes_M \mathbb{Z}/(p^2)$, for each $M \neq \begin{pmatrix} \beta & 0 \\ 0 & \beta^{-1} \end{pmatrix}$ and $M \neq \begin{pmatrix} \beta & 0 \\ 0 & \beta^{(p+1)/2} \end{pmatrix}$,
- $\blacktriangleright (p+1)/2 \text{ braces with } (B, \cdot) \simeq (\mathbb{Z}/(q) \times \mathbb{Z}/(q)) \rtimes_M \mathbb{Z}/(p^2), \text{ for } M = \begin{pmatrix} \beta & 0 \\ 0 & \beta^{-1} \end{pmatrix},$
- ► 2p braces with $(B, \cdot) \simeq (\mathbb{Z}/(q) \times \mathbb{Z}/(q)) \rtimes_M \mathbb{Z}/(p^2)$, for $M = \begin{pmatrix} \beta & 0 \\ 0 & \beta^{(p+1)/2} \end{pmatrix}$.

IV)
$$\frac{p^2 + 5p}{2} + 14$$
 (resp. $\frac{p^2 + 5p}{2} + 13$) braces with $(B, +) \simeq \mathbb{Z}/(pq) \times \mathbb{Z}/(pq)$ if $p \equiv 1 \pmod{4}$ (resp. if $p \equiv 3 \pmod{4}$). From these

► 4 braces with
$$(B, \cdot) \simeq \mathbb{Z}/(pq) \times \mathbb{Z}/(pq)$$
,

► 4 braces with
$$(B, \cdot) \simeq (\mathbb{Z}/(q) \times \mathbb{Z}/(q)) \rtimes_M (\mathbb{Z}/(p) \times \mathbb{Z}/(p))$$
, for each $M \neq \begin{pmatrix} \beta & 0 \\ 0 & \beta^{-1} \end{pmatrix}$ and $M \neq \begin{pmatrix} \beta & 0 \\ 0 & \beta^{(p+1)/2} \end{pmatrix}$,

► 4 (resp. 3) braces with
$$(B, \cdot) \simeq (\mathbb{Z}/(q) \times \mathbb{Z}/(q)) \rtimes_M (\mathbb{Z}/(p) \times \mathbb{Z}/(p))$$
, for $M = \begin{pmatrix} \beta & 0 \\ 0 & \beta^{-1} \end{pmatrix}$, if $p \equiv 1 \pmod{4}$ (resp. if $p \equiv 3 \pmod{4}$),

► 8 braces with $(B, \cdot) \simeq (\mathbb{Z}/(q) \times \mathbb{Z}/(q)) \rtimes_M (\mathbb{Z}/(p) \times \mathbb{Z}/(p))$, for $M = \begin{pmatrix} \beta & 0 \\ 0 & \beta^{(p+1)/2} \end{pmatrix}$,

► $(p^2 + p)/2$ braces with $(B, \cdot) \simeq (\mathbb{Z}/(q) \times \mathbb{Z}/(q)) \rtimes_{\beta} (\mathbb{Z}/(p) \times \mathbb{Z}/(p)).$