Hopf Algebras and Galois Module Theory May 28-31, 2024

Left braces of size $p^{2}(2 p+1)^{2}$, for p an odd Germain prime

Teresa Crespo

Wednesday May 29th

Braces

A (left) brace is a triple $(B,+, \cdot)$, where B is a set and + and \cdot are operations on B such that

- $(B,+)$ is an abelian group,
- (B, \cdot) is a group,
- for all $a, b, c \in B$,

$$
a(b+c)=a b-a+a c, \quad \text { (brace relation) }
$$

We call $(B,+)$ the additive group and (B, \cdot) the multiplicative group of the brace. The cardinal of B is called the size of the brace.

For any abelian group $(A,+),(A,+,+)$ is a brace, called trivial brace.
For B_{1} and B_{2} braces, a map $f: B_{1} \rightarrow B_{2}$ is a brace morphism if $f\left(b+b^{\prime}\right)=$ $f(b)+f\left(b^{\prime}\right)$ and $f\left(b b^{\prime}\right)=f(b) f\left(b^{\prime}\right)$ for all $b, b^{\prime} \in B_{1}$. If f is bijective, we say that f is an isomorphism. In that case we say that the braces B_{1} and B_{2} are isomorphic.

Braces vs. holomorph

If $(B,+)$ is an abelian group and G a regular subgroup of $\operatorname{Hol}(B) \simeq B \rtimes$ Aut B, then $\pi_{1 \mid G}: G \rightarrow B, \quad(a, f) \mapsto a$ is bijective.

For a left brace $(B,+, \cdot)$ and each $a \in B$, we have a bijective map

$$
\lambda_{a}: B \rightarrow B, \quad b \mapsto-a+a \cdot b .
$$

We have $\lambda_{a}(b+c)=\lambda_{a}(b)+\lambda_{a}(c), a \cdot b=a+\lambda_{a}(b), \lambda_{a \cdot b}=\lambda_{a} \circ \lambda_{b}$.
Proposition. (Bachiller) Let $(B,+, \cdot)$ be a left brace. Then

$$
\left\{\left(a, \lambda_{a}\right): a \in B\right\}
$$

is a regular subgroup of $\operatorname{Hol}(B,+)$, isomorphic to (B, \cdot).
Conversely, if $(B,+)$ is an abelian group and G is a regular subgroup of $\operatorname{Hol}(B,+)$, then B is a left brace with $(B, \cdot) \simeq G$, where

$$
a \cdot b=a+f(b), \quad\left(\pi_{1 \mid G}\right)^{-1}(a)=(a, f) \in G .
$$

These assignments give a bijective correspondence between isomorphism classes of left braces $(B,+, \cdot)$ and conjugacy classes of regular subgroups of $\operatorname{Hol}(B,+)$.

Semidirect product of braces

Let $\left(B_{1},+, \cdot\right)$ and $\left(B_{2},+, \cdot\right)$ be braces and $\tau:\left(B_{2}, \cdot\right) \rightarrow \operatorname{Aut}\left(B_{1},+, \cdot\right)$ be a group morphism. Define in $B_{1} \times B_{2}$

$$
(a, b)+\left(a^{\prime}, b^{\prime}\right)=\left(a+a^{\prime}, b+b^{\prime}\right), \quad(a, b) \cdot\left(a^{\prime}, b^{\prime}\right)=\left(a \cdot \tau(b)\left(a^{\prime}\right), b \cdot b^{\prime}\right)
$$

Then $\left(B_{1} \times B_{2},+, \cdot\right)$ is a brace which is called the semidirect product of the braces B_{1} and B_{2} via τ.

If τ is the trivial morphism, then $\left(B_{1} \times B_{2},+, \cdot\right)$ is the direct product of B_{1} and B_{2}.

Hypothesis. m and n are relatively prime integer numbers such that each group of order $m n$ has a normal subgroup of order m.

By the Schur-Zassenhaus theorem, the hypothesis on m and n implies that any group G of order $m n$ is $G=G_{1} \rtimes G_{2}$, with $\left|G_{1}\right|=m,\left|G_{2}\right|=n$ and any subgroup of G of order n is conjugate to G_{2}.

Proposition. Each brace of size mn is a semidirect product of a brace of size m and a brace of size n.

Proof.

Let B be a brace of size $m n$ with additive group N and multiplicative group G. $N=N_{1} \times N_{2}$, with N_{1} abelian group of order m, N_{2} abelian group of order n. $G=G_{1} \rtimes G_{2}$, with G_{1} group of order m, G_{2} group of order n.
$\operatorname{Aut}(N) \simeq \operatorname{Aut}\left(N_{1}\right) \times \operatorname{Aut}\left(N_{2}\right) \Rightarrow \operatorname{Hol}(N) \simeq \operatorname{Hol}\left(N_{1}\right) \times \operatorname{Hol}\left(N_{2}\right)$.

$$
\begin{gather*}
\operatorname{Hol}(N) \ni(a, f, b, g), a \in N_{1}, f \in \operatorname{Aut}\left(N_{1}\right), b \in N_{2}, g \in \operatorname{Aut}\left(N_{2}\right) \\
\left(a_{1}, f_{1}, b_{1}, g_{1}\right)\left(a_{2}, f_{2}, b_{2}, g_{2}\right)=\left(a_{1}+f_{1}\left(a_{2}\right), f_{1} f_{2}, b_{1}+g_{1}\left(b_{2}\right), g_{1} g_{2}\right) \tag{1}\\
\left(a_{1}, f_{1}, b_{1}, g_{1}\right)^{-1}=\left(-f^{-1}\left(a_{1}\right), f_{1}^{-1},-g_{1}^{-1}\left(b_{1}\right), g_{1}^{-1}\right) . \tag{2}
\end{gather*}
$$

The regular subgroup of $\operatorname{Hol}(N)$ corresponding to B is $\widetilde{G}=\left\{\left(x, \lambda_{x}\right): x \in N\right\}$.
For $x=(0, b) \in N,\left(x, \lambda_{x}\right)=\left(0, f_{b}, b, g_{b}\right)$ for some $f_{b} \in \operatorname{Aut}\left(N_{1}\right), g_{b} \in \operatorname{Aut}\left(N_{2}\right)$.
$\widetilde{G}_{2}:=\left\{\left(0, f_{b}, b, g_{b}\right): b \in N_{2}\right\}$ is a subgroup of \widetilde{G} of order n, conjugate to G_{2}.

For $x=(a, 0) \in N,\left(x, \lambda_{x}\right)=\left(a, f_{a}, 0, g_{a}\right)$, for some $f_{a} \in \operatorname{Aut}\left(N_{1}\right), g_{a} \in \operatorname{Aut}\left(N_{2}\right)$. $\widetilde{G}_{1}:=\left\{\left(a, f_{a}, 0, g_{a}\right): a \in N_{2}\right\}$ is a subgroup of \widetilde{G} of order m, equal to G_{1}.

We have then $\widetilde{G}=\widetilde{G}_{1} \rtimes \widetilde{G}_{2}$. Moreover

$$
\widetilde{G}_{1} \triangleleft \widetilde{G} \Longrightarrow g_{a}=\mathrm{Id}, \forall a \in N_{1} .
$$

Now consider

$$
\bar{G}_{1}:=\left\{\left(a, f_{a}\right): a \in N_{1}\right\} \subset \operatorname{Hol}\left(N_{1}\right), \quad \bar{G}_{2}:=\left\{\left(b, g_{b}\right): b \in N_{2}\right\} \subset \operatorname{Hol}\left(N_{2}\right) .
$$

\bar{G}_{1} is a regular subgroup of $\operatorname{Hol}\left(N_{1}\right)$, isomorphic to G_{1} and \bar{G}_{2} is a regular subgroup of $\operatorname{Hol}\left(N_{2}\right)$, isomorphic to G_{2}, corresponding to two braces B_{1}, B_{2} of sizes m and n, respectively. We define

$$
\tau: \bar{G}_{2} \rightarrow \operatorname{Aut}\left(N_{1}\right), \tau\left(b, g_{b}\right)=f_{b}
$$

We check that f_{b} is also a morphism with respect to the product \cdot in \bar{G}_{1} and that B is the semidirect product of B_{1} and B_{2} via τ.

Corollary. Let B_{1}, B_{2} be braces of sizes m, n, respectively. Let $G_{1}:=\left\{\left(a, \lambda_{a}\right)\right.$: $\left.a \in\left(B_{1},+\right)\right\} \subset \operatorname{Hol}\left(B_{1},+\right), G_{2}:=\left\{\left(b, \lambda_{b}\right): b \in\left(B_{1},+\right)\right\} \subset \operatorname{Hol}\left(B_{2},+\right)$ be the regular subgroups corresponding to B_{1}, B_{2}, respectively. Let τ be a group morphism from $\left(B_{2}, \cdot\right)$ to $\operatorname{Aut}\left(B_{1},+, \cdot\right)$. Then

$$
G:=\left\{\left(a, \lambda_{a} \tau\left(b, \lambda_{b}\right), b, \lambda_{b}\right):(a, b) \in\left(B_{1} \times B_{2},+\right)\right\} \subset \operatorname{Hol}\left(B_{1} \times B_{2},+\right)
$$

is a regular subgroup of $\operatorname{Hol}\left(B_{1} \times B_{2},+\right)$ corresponding to the semidirect product of B_{1} and B_{2} via τ.

Proposition. Isomorphism classes of braces of size mn correspond to triples $\left(G_{1}, G_{2}, \tau\right)$, where G_{1} and G_{2} ranges over conjugation classes of regular subgroups of $\operatorname{Hol}\left(N_{1}\right)$ and $\operatorname{Hol}\left(N_{2}\right)$, respectively, and τ ranges over equivalence classes of morphisms from G_{2} to Aut B_{1}, where B_{1} denotes the brace corresponding to G_{1}, under the relation

$$
\tau \sim \tau^{\prime} \Leftrightarrow \tau^{\prime} \circ \operatorname{conj}_{h_{2}} \mid G_{2}=\operatorname{conj}_{h_{1}} \circ \tau
$$

for $\left(h_{1}, h_{2}\right) \in \operatorname{Aut} N$ such that $\operatorname{conj}_{h_{1}}\left(G_{1}\right)=G_{1}$ and $\operatorname{conj}_{h_{2}}\left(G_{2}\right)=G_{2}$.

We shall apply the preceding results to determine all left braces of size $p^{2} q^{2}$, for p an odd Germain prime, $q=2 p+1$.
Using the Sylow theorems, we obtain that $m=q^{2}, n=p^{2}$ satisfy the assumed hypothesis, i.e. each group of order $p^{2} q^{2}$ has a normal subgroup of order q^{2}.

Braces of size p^{2}, for p an odd prime number (Bachiller)
In all cases, $(B, \cdot) \simeq(B,+)$.
I) Cyclic additive group.

1) Trivial brace:

Aut $B=\operatorname{Aut}\left(\mathbb{Z} /\left(p^{2}\right)\right) \simeq\left(\mathbb{Z} /\left(p^{2}\right)\right)^{*}$,
$G:=\{(x, \mathrm{Id}): x \in B\} \subset \operatorname{Hol}\left(\mathbb{Z} /\left(p^{2}\right)\right)$.
2) Brace with • defined by $x_{1} \cdot x_{2}=x_{1}+x_{2}+p x_{1} x_{2}$:

Aut $B=\left\{k \in\left(\mathbb{Z} /\left(p^{2}\right)\right)^{*}: k \equiv 1(\bmod p)\right\}$,
$G=\{(x, 1+p x): x \in B\} \subset \operatorname{Hol}\left(\mathbb{Z} /\left(p^{2}\right)\right)$.
II) Noncyclic additive group.

1) Trivial brace:

Aut $B=\operatorname{Aut}(\mathbb{Z} /(p) \times \mathbb{Z} /(p)) \simeq \operatorname{GL}(2, p)$,
$G=\left\{\left(\binom{x}{y}, \mathrm{Id}\right):\binom{x}{y} \in B\right\} \subset \operatorname{Hol}(\mathbb{Z} /(p) \times \mathbb{Z} /(p))$.
2) Brace with \cdot defined by $\binom{x_{1}}{y_{1}} \cdot\binom{x_{2}}{y_{2}}=\binom{x_{1}+x_{2}+y_{1} y_{2}}{y_{1}+y_{2}}$:

$$
\begin{gathered}
\text { Aut } B=\left\{\left(\begin{array}{ll}
d^{2} & b \\
0 & d
\end{array}\right): b \in \mathbb{Z} /(p), d \in(\mathbb{Z} /(p))^{*}\right\} \\
G=\left\{\left(\binom{x}{y},\left(\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right)\right):\binom{x}{y} \in B\right\} \subset \operatorname{Hol}(\mathbb{Z} /(p) \times \mathbb{Z} /(p)) .
\end{gathered}
$$

Groups of order $p^{2} q^{2}, p, q$ primes, $q=2 p+1$
$G=G_{1} \rtimes_{\tau} G_{2},\left|G_{1}\right|=q^{2},\left|G_{2}\right|=p^{2}, \tau: G_{2} \rightarrow \operatorname{Aut}\left(G_{1}\right)$.
$G_{1} \rtimes_{\tau} G_{2} \simeq G_{1} \rtimes_{\tau^{\prime}} G_{2} \Leftrightarrow$ there exist automorphisms f of G_{1}, g of G_{2} such that $\operatorname{conj}_{f} \circ \tau=\tau^{\prime} \circ g$.

1) $G_{1}=\mathbb{Z} /\left(q^{2}\right)$

Let $\langle\alpha\rangle$ be the subgroup of order p of $\operatorname{Aut}\left(\mathbb{Z} /\left(q^{2}\right)\right)=\left(\mathbb{Z} /\left(q^{2}\right)\right)^{*}$.

$$
\begin{aligned}
& \text { 1.1) } \frac{G_{2}=\mathbb{Z} /\left(p^{2}\right)}{} \\
& G=\mathbb{Z} /\left(p^{2} q^{2}\right) \\
& \mathbb{Z} /\left(q^{2}\right) \rtimes \mathbb{Z} /\left(p^{2}\right),\left(x_{1}, y_{1}\right) \cdot\left(x_{2}, y_{2}\right)=\left(x_{1}+\alpha^{y_{1}} x_{2}, y_{1}+y_{2}\right),
\end{aligned}
$$

$$
\text { 1.2) } \underline{G_{2}=\mathbb{Z} /(p) \times \mathbb{Z} /(p)}
$$

$$
G=\mathbb{Z} /\left(p q^{2}\right) \times \mathbb{Z} /(p)
$$

$$
G=\mathbb{Z} /\left(q^{2}\right) \rtimes(\mathbb{Z} /(p) \times \mathbb{Z}(p)),\left(x_{1},\binom{y_{1}}{z_{1}}\right) \cdot\left(x_{2},\binom{y_{2}}{z_{2}}\right)=\left(x_{1}+\alpha^{y_{1}} x_{2},\binom{y_{1}+y_{2}}{z_{1}+z_{2}}\right) .
$$

2) $G_{1}=\mathbb{Z} /(q) \times \mathbb{Z} /(q)$
$\operatorname{Aut}(\mathbb{Z} /(q) \times \mathbb{Z} /(q))=\mathrm{GL}(2, q)$ has $(p+3) / 2$ subgroups of order p, up to conjugacy,

$$
\left\langle\left(\begin{array}{ll}
1 & 0 \tag{3}\\
0 & \beta
\end{array}\right)\right\rangle,\left\langle\left(\begin{array}{cc}
\beta & 0 \\
0 & \beta
\end{array}\right)\right\rangle,\left\langle\left(\begin{array}{cc}
\beta & 0 \\
0 & \beta^{-1}
\end{array}\right)\right\rangle,\left\langle\left(\begin{array}{cc}
\beta & 0 \\
0 & \beta^{k}
\end{array}\right)\right\rangle,
$$

where $\langle\beta\rangle$ is the unique subgroup of order p of $(\mathbb{Z} /(q))^{*}, k \in(\mathbb{Z} /(p))^{*}, k \neq-1,1$, $k \sim l \Leftrightarrow k l \equiv 1(\bmod p)$.
2.1) $\underline{G_{2}=\mathbb{Z} /\left(p^{2}\right)}$
$G=\mathbb{Z} /\left(p^{2} q\right) \times \mathbb{Z} /(q)$
$G=(\mathbb{Z} /(q) \times \mathbb{Z} /(q)) \rtimes_{M} \mathbb{Z} /\left(p^{2}\right)$

$$
\left(\binom{x_{1}}{y_{1}}, z_{1}\right) \cdot\left(\binom{x_{2}}{y_{2}}, z_{2}\right)=\left(\binom{x_{1}}{y_{1}}+M^{z_{1}}\binom{x_{2}}{y_{2}}, z_{1}+z_{2}\right)
$$

for M one of the matrices in (3). This gives $(p+3) / 2$ groups.
2.2) $\underline{G_{2}=\mathbb{Z} /(p) \times \mathbb{Z} /(p)}$
$G=\mathbb{Z} /(p q) \times \mathbb{Z} /(p q)$
$G=(\mathbb{Z} /(q) \times \mathbb{Z} /(q)) \rtimes_{M}(\mathbb{Z} /(p) \times \mathbb{Z} /(p))$,
$\left(\binom{x_{1}}{y_{1}},\binom{z_{1}}{t_{1}}\right) \cdot\left(\binom{x_{2}}{y_{2}},\binom{z_{2}}{t_{2}}\right)=\left(\binom{x_{1}}{y_{1}}+M^{z_{1}}\binom{x_{2}}{y_{2}},\binom{z_{1}+z_{2}}{t_{1}+t_{2}}\right)$,
for M one of the matrices in (3). This gives $(p+3) / 2$ groups.
$G=(\mathbb{Z} /(q) \times \mathbb{Z} /(q)) \rtimes_{\beta}(\mathbb{Z} /(p) \times \mathbb{Z} /(p))$,
$\left(\binom{x_{1}}{y_{1}},\binom{z_{1}}{t_{1}}\right) \cdot\left(\binom{x_{2}}{y_{2}},\binom{z_{2}}{t_{2}}\right)=\left(\binom{x_{1}+\beta^{t_{1}} x_{2}}{y_{1}+\beta^{z_{1}+t_{1}} y_{2}},\binom{z_{1}+z_{2}}{t_{1}+t_{2}}\right)$.

Given an abelian group N of order $p^{2} q^{2}(p, q$ primes, $q=2 p+1), N=N_{1} \times N_{2}$, $\left|N_{1}\right|=q^{2},\left|N_{2}\right|=p^{2}$, we want to determine all braces with additive group N.

We consider the pairs of braces B_{1}, B_{2} of sizes q^{2}, p^{2}, with additive groups N_{1}, N_{2}. Let G_{1}, G_{2} denote their multiplicative groups.

For each of the group morphisms $\tau: G_{2} \rightarrow \operatorname{Aut}\left(G_{1}\right)$, we need to perform the following steps.

1) Check if the image of τ is contained in $\operatorname{Aut}\left(B_{1}\right)$.
2) Split the equivalence class of τ under the relation

$$
\tau \sim \tau^{\prime} \Leftrightarrow \tau^{\prime} \circ g=\operatorname{conj}_{f} \circ \tau, f \in \operatorname{Aut} G_{1}, g \in \operatorname{Aut} G_{2}
$$

into equivalence classes under the relation

$$
\begin{aligned}
& \tau \sim \tau^{\prime} \Leftrightarrow \tau^{\prime} \circ \operatorname{conj}_{h_{2}} \mid G_{2}=\operatorname{conj}_{h_{1}} \circ \tau \\
& \left(h_{1}, h_{2}\right) \in \operatorname{Aut} N \text { such that } \operatorname{conj}_{h_{1}}\left(G_{1}\right)=G_{1} \text { and } \operatorname{conj}_{h_{2}}\left(G_{2}\right)=G_{2}
\end{aligned}
$$

The braces $(B,+, \cdot)$ of size $p^{2} q^{2}$, with p odd Germain prime, $q=2 p+1$ are
I) $p+4$ braces with $(B,+) \simeq \mathbb{Z} /\left(p^{2} q^{2}\right)$. From these

- 4 braces with $(B, \cdot) \simeq \mathbb{Z} /\left(p^{2} q^{2}\right)$,
- p braces with $(B, \cdot) \simeq \mathbb{Z} /\left(q^{2}\right) \rtimes \mathbb{Z} /\left(p^{2}\right)$.
II) 8 braces with $(B,+) \simeq \mathbb{Z} /\left(p q^{2}\right) \times \mathbb{Z} /(p)$. From these
- 4 braces with $(B, \cdot) \simeq \mathbb{Z} /\left(p q^{2}\right) \times \mathbb{Z} /(p)$,
- 4 braces with $(B, \cdot) \simeq \mathbb{Z} /\left(q^{2}\right) \rtimes(\mathbb{Z} /(p) \times \mathbb{Z}(p))$.
III) $\left(p^{2}+4 p+9\right) / 2$ braces with $(B,+) \simeq \mathbb{Z} /\left(p^{2} q\right) \times \mathbb{Z} /(q)$. From these
- 4 braces with $(B, \cdot) \simeq \mathbb{Z} /\left(p^{2} q\right) \times \mathbb{Z} /(q)$,
- p braces with $(B, \cdot) \simeq(\mathbb{Z} /(q) \times \mathbb{Z} /(q)) \rtimes_{M} \mathbb{Z} /\left(p^{2}\right)$, for each $M \neq\left(\begin{array}{cc}\beta & 0 \\ 0 & \beta^{-1}\end{array}\right)$ and $M \neq\left(\begin{array}{cc}\beta & 0 \\ 0 & \beta^{(p+1) / 2}\end{array}\right)$,
- $(p+1) / 2$ braces with $(B, \cdot) \simeq(\mathbb{Z} /(q) \times \mathbb{Z} /(q)) \rtimes_{M} \mathbb{Z} /\left(p^{2}\right)$, for $M=\left(\begin{array}{cc}\beta & 0 \\ 0 & \beta^{-1}\end{array}\right)$,
$-2 p$ braces with $(B, \cdot) \simeq(\mathbb{Z} /(q) \times \mathbb{Z} /(q)) \rtimes_{M} \mathbb{Z} /\left(p^{2}\right)$, for $M=\left(\begin{array}{c}\beta \\ 0 \\ 0\end{array} \beta^{(p+1) / 2}\right)$.
IV) $\frac{p^{2}+5 p}{2}+14\left(\right.$ resp. $\left.\frac{p^{2}+5 p}{2}+13\right)$ braces with $(B,+) \simeq \mathbb{Z} /(p q) \times \mathbb{Z} /(p q)$ if $p \equiv 1(\bmod 4)($ resp. if $p \equiv 3(\bmod 4))$. From these
- 4 braces with $(B, \cdot) \simeq \mathbb{Z} /(p q) \times \mathbb{Z} /(p q)$,
- 4 braces with $(B, \cdot) \simeq(\mathbb{Z} /(q) \times \mathbb{Z} /(q)) \rtimes_{M}(\mathbb{Z} /(p) \times \mathbb{Z} /(p))$, for each $M \neq$ $\left(\begin{array}{cc}\beta & 0 \\ 0 & \beta^{-1}\end{array}\right)$ and $M \neq\left(\begin{array}{cc}\beta & 0 \\ 0 & \beta^{(p+1) / 2}\end{array}\right)$,
- 4 (resp. 3) braces with $(B, \cdot) \simeq(\mathbb{Z} /(q) \times \mathbb{Z} /(q)) \rtimes_{M}(\mathbb{Z} /(p) \times \mathbb{Z} /(p))$, for $M=\left(\begin{array}{cc}\beta & 0 \\ 0 & \beta^{-1}\end{array}\right)$, if $p \equiv 1(\bmod 4)($ resp. if $p \equiv 3(\bmod 4))$,
- 8 braces with $(B, \cdot) \simeq(\mathbb{Z} /(q) \times \mathbb{Z} /(q)) \rtimes_{M}(\mathbb{Z} /(p) \times \mathbb{Z} /(p))$, for $M=$ $\left(\begin{array}{cc}\beta & 0 \\ 0 & \beta^{(p+1) / 2}\end{array}\right)$,
- $\left(p^{2}+p\right) / 2$ braces with $(B, \cdot) \simeq(\mathbb{Z} /(q) \times \mathbb{Z} /(q)) \rtimes_{\beta}(\mathbb{Z} /(p) \times \mathbb{Z} /(p))$.

