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Braces

A (left) brace is a triple (B,+, ·), where B is a set and + and · are operations on
B such that

• (B,+) is an abelian group,

• (B, ·) is a group,

• for all a, b, c ∈ B,

a(b + c) = ab− a + ac, (brace relation).

We call (B,+) the additive group and (B, ·) the multiplicative group of the brace.
The cardinal of B is called the size of the brace.

For any abelian group (A,+), (A,+,+) is a brace, called trivial brace.

For B1 and B2 braces, a map f : B1 → B2 is a brace morphism if f(b + b′) =
f(b) + f(b′) and f(bb′) = f(b)f(b′) for all b, b′ ∈ B1. If f is bijective, we say that f
is an isomorphism. In that case we say that the braces B1 and B2 are isomorphic.



Braces vs. holomorph

If (B,+) is an abelian group and G a regular subgroup of Hol(B) ≃ B ⋊ AutB,
then π1|G : G → B, (a, f) 7→ a is bijective.

For a left brace (B,+, ·) and each a ∈ B, we have a bijective map

λa : B → B, b 7→ −a + a · b.

We have λa(b + c) = λa(b) + λa(c), a · b = a + λa(b), λa·b = λa ◦ λb.

Proposition. (Bachiller) Let (B,+, ·) be a left brace. Then

{(a, λa) : a ∈ B}

is a regular subgroup of Hol(B,+), isomorphic to (B, ·).
Conversely, if (B,+) is an abelian group and G is a regular subgroup of Hol(B,+),
then B is a left brace with (B, ·) ≃ G, where

a · b = a + f(b), (π1|G)
−1(a) = (a, f) ∈ G.

These assignments give a bijective correspondence between isomorphism classes
of left braces (B,+, ·) and conjugacy classes of regular subgroups of Hol(B,+).



Semidirect product of braces

Let (B1,+, ·) and (B2,+, ·) be braces and τ : (B2, ·) → Aut(B1,+, ·) be a group
morphism. Define in B1 ×B2

(a, b) + (a′, b′) = (a + a′, b + b′), (a, b) · (a′, b′) = (a · τ (b)(a′), b · b′)

Then (B1×B2,+, ·) is a brace which is called the semidirect product of the braces
B1 and B2 via τ .

If τ is the trivial morphism, then (B1×B2,+, ·) is the direct product of B1 and B2.

Hypothesis. m and n are relatively prime integer numbers such that each group
of order mn has a normal subgroup of order m.

By the Schur-Zassenhaus theorem, the hypothesis on m and n implies that any
group G of order mn is G = G1 ⋊G2, with |G1| = m, |G2| = n and any subgroup
of G of order n is conjugate to G2.

Proposition. Each brace of size mn is a semidirect product of a brace of size
m and a brace of size n.



Proof.
Let B be a brace of size mn with additive group N and multiplicative group G.

N = N1 ×N2, with N1 abelian group of order m, N2 abelian group of order n.

G = G1 ⋊G2, with G1 group of order m, G2 group of order n.

Aut(N) ≃ Aut(N1)× Aut(N2) ⇒ Hol(N) ≃ Hol(N1)× Hol(N2).

Hol(N) ∋ (a, f, b, g), a ∈ N1, f ∈ Aut(N1), b ∈ N2, g ∈ Aut(N2)

(a1, f1, b1, g1)(a2, f2, b2, g2) = (a1 + f1(a2), f1f2, b1 + g1(b2), g1g2) (1)

(a1, f1, b1, g1)
−1 = (−f−1(a1), f

−1
1 ,−g−1

1 (b1), g
−1
1 ). (2)

The regular subgroup of Hol(N) corresponding to B is G̃ = {(x, λx) : x ∈ N}.

For x = (0, b) ∈ N , (x, λx) = (0, fb, b, gb) for some fb ∈ Aut(N1), gb ∈ Aut(N2).

G̃2 := {(0, fb, b, gb) : b ∈ N2} is a subgroup of G̃ of order n, conjugate to G2.



For x = (a, 0) ∈ N , (x, λx) = (a, fa, 0, ga), for some fa ∈ Aut(N1), ga ∈ Aut(N2).

G̃1 := {(a, fa, 0, ga) : a ∈ N2} is a subgroup of G̃ of order m, equal to G1.

We have then G̃ = G̃1 ⋊ G̃2. Moreover

G̃1 ✁ G̃ =⇒ ga = Id, ∀a ∈ N1.

Now consider

G1 := {(a, fa) : a ∈ N1} ⊂ Hol(N1), G2 := {(b, gb) : b ∈ N2} ⊂ Hol(N2).

G1 is a regular subgroup of Hol(N1), isomorphic to G1 and G2 is a regular subgroup
of Hol(N2), isomorphic to G2, corresponding to two braces B1, B2 of sizes m and n,
respectively. We define

τ : G2 → Aut(N1), τ (b, gb) = fb.

We check that fb is also a morphism with respect to the product · in G1 and that
B is the semidirect product of B1 and B2 via τ .



Corollary. Let B1, B2 be braces of sizes m,n, respectively. Let G1 := {(a, λa) :
a ∈ (B1,+)} ⊂ Hol(B1,+), G2 := {(b, λb) : b ∈ (B1,+)} ⊂ Hol(B2,+) be the reg-
ular subgroups corresponding to B1, B2, respectively. Let τ be a group morphism
from (B2, ·) to Aut(B1,+, ·). Then

G := {(a, λaτ (b, λb), b, λb) : (a, b) ∈ (B1 ×B2,+)} ⊂ Hol(B1 ×B2,+)

is a regular subgroup of Hol(B1×B2,+) corresponding to the semidirect product
of B1 and B2 via τ .

Proposition. Isomorphism classes of braces of size mn correspond to triples
(G1, G2, τ ), where G1 and G2 ranges over conjugation classes of regular sub-
groups of Hol(N1) and Hol(N2), respectively, and τ ranges over equivalence
classes of morphisms from G2 to AutB1, where B1 denotes the brace corre-
sponding to G1, under the relation

τ ∼ τ ′ ⇔ τ ′ ◦ conjh2|G2 = conjh1 ◦ τ

for (h1, h2) ∈ AutN such that conjh1(G1) = G1 and conjh2(G2) = G2.



We shall apply the preceding results to determine all left braces of size p2q2,
for p an odd Germain prime, q = 2p + 1.

Using the Sylow theorems, we obtain that m = q2, n = p2 satisfy the assumed
hypothesis, i.e. each group of order p2q2 has a normal subgroup of order q2.



Braces of size p2, for p an odd prime number (Bachiller)

In all cases, (B, ·) ≃ (B,+).

I) Cyclic additive group.

1) Trivial brace:

AutB = Aut(Z/(p2)) ≃ (Z/(p2))∗,

G := {(x, Id) : x ∈ B} ⊂ Hol(Z/(p2)).

2) Brace with · defined by x1 · x2 = x1 + x2 + px1x2:

AutB = {k ∈ (Z/(p2))∗ : k ≡ 1 (mod p)},

G = {(x, 1 + px) : x ∈ B} ⊂ Hol(Z/(p2)).



II) Noncyclic additive group.

1) Trivial brace:

AutB = Aut(Z/(p)× Z/(p)) ≃ GL(2, p),

G = {(( xy ) , Id) : ( xy ) ∈ B} ⊂ Hol(Z/(p)× Z/(p)).

2) Brace with · defined by

(
x1
y1

)
·

(
x2
y2

)
=

(
x1 + x2 + y1y2

y1 + y2

)
:

AutB =

{(
d2 b
0 d

)
: b ∈ Z/(p), d ∈ (Z/(p))∗

}

G =

{((
x
y

)
,

(
1 y
0 1

))
:

(
x
y

)
∈ B

}
⊂ Hol(Z/(p)× Z/(p)).



Groups of order p2q2, p, q primes, q = 2p + 1

G = G1 ⋊τ G2, |G1| = q2, |G2| = p2, τ : G2 → Aut(G1).
G1 ⋊τ G2 ≃ G1 ⋊τ ′ G2 ⇔ there exist automorphisms f of G1, g of G2 such that
conjf ◦ τ = τ ′ ◦ g.

1) G1 = Z/(q2)

Let 〈α〉 be the subgroup of order p of Aut(Z/(q2)) = (Z/(q2))∗.

1.1) G2 = Z/(p2)

G = Z/(p2q2)

Z/(q2)⋊ Z/(p2), (x1, y1) · (x2, y2) = (x1 + αy1x2, y1 + y2),

1.2) G2 = Z/(p)× Z/(p)

G = Z/(pq2)× Z/(p)

G = Z/(q2)⋊ (Z/(p)× Z(p)), (x1, (
y1
z1 )) · (x2, (

y2
z2 )) =

(
x1 + αy1x2,

(
y1+y2
z1+z2

))
.



2) G1 = Z/(q)× Z/(q)

Aut(Z/(q)×Z/(q)) = GL(2, q) has (p+3)/2 subgroups of order p, up to conjugacy,

〈(
1 0
0 β

)〉
,

〈(
β 0
0 β

)〉
,

〈(
β 0
0 β−1

)〉
,

〈(
β 0
0 βk

)〉
, (3)

where 〈β〉 is the unique subgroup of order p of (Z/(q))∗, k ∈ (Z/(p))∗, k 6= −1, 1 ,
k ∼ l ⇔ kl ≡ 1 (mod p).

2.1) G2 = Z/(p2)

G = Z/(p2q)× Z/(q)

G = (Z/(q)× Z/(q))⋊M Z/(p2)

((
x1
y1

)
, z1

)
·

((
x2
y2

)
, z2

)
=

((
x1
y1

)
+M z1

(
x2
y2

)
, z1 + z2

)
,

for M one of the matrices in (3). This gives (p + 3)/2 groups.



2.2) G2 = Z/(p)× Z/(p)

G = Z/(pq)× Z/(pq)

G = (Z/(q)× Z/(q))⋊M (Z/(p)× Z/(p)),

((
x1
y1

)
,

(
z1
t1

))
·

((
x2
y2

)
,

(
z2
t2

))
=

((
x1
y1

)
+M z1

(
x2
y2

)
,

(
z1 + z2
t1 + t2

))
,

for M one of the matrices in (3). This gives (p + 3)/2 groups.

G = (Z/(q)× Z/(q))⋊β (Z/(p)× Z/(p)),

((
x1
y1

)
,

(
z1
t1

))
·

((
x2
y2

)
,

(
z2
t2

))
=

((
x1 + βt1x2
y1 + βz1+t1y2

)
,

(
z1 + z2
t1 + t2

))
.



Given an abelian group N of order p2q2 (p, q primes, q = 2p + 1), N = N1 × N2,
|N1| = q2, |N2| = p2, we want to determine all braces with additive group N .

We consider the pairs of braces B1, B2 of sizes q
2, p2, with additive groups N1, N2.

Let G1, G2 denote their multiplicative groups.

For each of the group morphisms τ : G2 → Aut(G1), we need to perform the
following steps.

1) Check if the image of τ is contained in Aut(B1).

2) Split the equivalence class of τ under the relation

τ ∼ τ ′ ⇔ τ ′ ◦ g = conjf ◦ τ, f ∈ AutG1, g ∈ AutG2

into equivalence classes under the relation

τ ∼ τ ′ ⇔ τ ′ ◦ conjh2|G2 = conjh1 ◦ τ,

(h1, h2) ∈ AutN such that conjh1(G1) = G1 and conjh2(G2) = G2.



The braces (B,+, ·) of size p2q2, with p odd Germain prime, q = 2p + 1 are

I) p + 4 braces with (B,+) ≃ Z/(p2q2). From these

◮ 4 braces with (B, ·) ≃ Z/(p2q2),

◮ p braces with (B, ·) ≃ Z/(q2)⋊ Z/(p2).

II) 8 braces with (B,+) ≃ Z/(pq2)× Z/(p). From these

◮ 4 braces with (B, ·) ≃ Z/(pq2)× Z/(p),

◮ 4 braces with (B, ·) ≃ Z/(q2)⋊ (Z/(p)× Z(p)).

III) (p2 + 4p + 9)/2 braces with (B,+) ≃ Z/(p2q)× Z/(q). From these

◮ 4 braces with (B, ·) ≃ Z/(p2q)× Z/(q),

◮ p braces with (B, ·) ≃ (Z/(q)× Z/(q))⋊M Z/(p2), for each M 6=
(

β 0
0 β−1

)

and M 6=
(

β 0

0 β(p+1)/2

)
,

◮ (p+1)/2 braces with (B, ·) ≃ (Z/(q)×Z/(q))⋊MZ/(p2), forM =
(

β 0
0 β−1

)
,

◮ 2p braces with (B, ·) ≃ (Z/(q)× Z/(q))⋊M Z/(p2), for M =
(

β 0

0 β(p+1)/2

)
.



IV)
p2 + 5p

2
+ 14 (resp.

p2 + 5p

2
+ 13) braces with (B,+) ≃ Z/(pq) × Z/(pq) if

p ≡ 1 (mod 4) (resp. if p ≡ 3 (mod 4)). From these

◮ 4 braces with (B, ·) ≃ Z/(pq)× Z/(pq),

◮ 4 braces with (B, ·) ≃ (Z/(q)×Z/(q))⋊M (Z/(p)×Z/(p)), for each M 6=(
β 0

0 β−1

)
and M 6=

(
β 0

0 β(p+1)/2

)
,

◮ 4 (resp. 3) braces with (B, ·) ≃ (Z/(q) × Z/(q)) ⋊M (Z/(p) × Z/(p)), for

M =
(

β 0

0 β−1

)
, if p ≡ 1 (mod 4) (resp. if p ≡ 3 (mod 4)),

◮ 8 braces with (B, ·) ≃ (Z/(q) × Z/(q)) ⋊M (Z/(p) × Z/(p)), for M =(
β 0

0 β(p+1)/2

)
,

◮ (p2 + p)/2 braces with (B, ·) ≃ (Z/(q)× Z/(q))⋊β (Z/(p)× Z/(p)).


